10.1

10.0 ESTIMATING SURVIVAL

10.1 Introduction

There is aconsiderable variety of ways to stimate survival. Many of
the available methods come aby-products ofmethods designed primidy for
measuring population size (Chapter 8), and are thus best dscussed in
reference tothat problem. However, knowledge of survival issufficiently
important tojustify specific studies without special reference todetermining
population size. Such efforts are usually dependent onsome form of marking
or tagging. Since marking is almost always a very expensive and time-
consuming operation, itshould, wherever possible, also result in estimates of
population numbers. However, we will here be concerned mainly with
measuring survival.

A survival rate is necessarily defined for some unit of time, thus:
Number alive at end of period

Number alive at start of period
= proportion surviving the period.

Survival rate =

When dealing with populations exjpited by hunting or fishing it is
frequently necessary taonsider twocomponents ofmortality, one due to the
exploitation and the second toall other causes of death("natural® mortality).
When the two different forces of mortality exist at the same time, only one can
actually result in a givendeath, so it iscustomary tospeak of"competing"
sources of mortality or "competing risks."

If a population is "closed", that is, has no gains or losses from
immigration, births, or engration, the simplest model for ortality or
survival isjust the bnomial distribution. If Nrepresents initial population
size, and p the proportion dying during some interval, then the expected
number ofdeaths is simply Np, and the probability of various numbers of
deaths isgiven by terms ofthe binomial distribution. Similarly if fractions
can be assigned toexploitation and to natural mortality, then the model
becomes a multinomial distribution.

In practice it isnecessary to be cautious in using sample model.
Mortality seldom operates asa simple random variable as required by the
model. In exploitation in particular, there is usually atendency for events
resulting in deaths to come in"bunches", \violating the postulate of
independence. Furthermore, omality almost always varies seasonally, and
exploitation usually is restricted to particular seasonslsoAwhen animals are
tagged in groups, they are likely to stay clustered to some extent.

Another point is that werarely know the total population size or the
total numbers of deaths, and must estimatevival or mortality through some
sampling process. In spite of all of this, the bihomial model frequently
provides auseful starting place (but usually not with total population as a
parameter). Certain specialpopulations dofulfill many of the requirements
for the bnomial and multinomial nodels. These arenormally experimental
populations being subjectedto, e.g., chemicals todetermine lethal effects of
various dosages ("bioassay").
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The principal methods for estimating survival or mortality may be
categorized as follows:

l. From tagging or marking
A. Multiple recoveries of marked individuals

1. Capture-recapture methods. As mentioned above, estimates of
survival or mortality are usually auxiliary to population estimation. These
methods usually involve a series of captures and releases of individuals.

2. Multiple recoveries ofindividuals all tagged at thesame time. Not a
commonly used technique.

B. Single recovery of amarked individual. Normally the tag recovery comes
coincident with death of the individual.

1. Recovery effort variable. For the most part, this pertains to
exploitation, andthe effort expended inhunting orfishing isthat considered
as devoted to recovery.

2. Constant recovery effort. Very often this isnacessary, but untested
assumption. It my be reasonably acceptable where tag recovery depends on
accidental death of individuals.

a. Exact time ofdeath known. This is an area not much explored
in biological studies, butwell known industrially under the heading of'life-
testing", where the survival of interest ishat of some manufactured product
(e.g., light-bulbs).

b. Time of death not known exactly. This is the category into
which the bulk of methods in current use fall.

II. Other methods

A. Catch-effort methods. Incommercial fisheries studies, much attention has
been paid toassessingpopulation size through measuringthe rate ofchange
in catch with accumulated effort. It maglso bepossible to estimatemortality
at the same time.

B. Change-in-ratio methods. Also known as "dichotomy" or "survey- removal"
methods, thesedepend on knowig the magnitude of a removal and observing
a ratio before and after the removal. Survival may be concurrently estimated.

C. Catch-curves or killcurves. The agestructure ofanimals taken inharvests
may provide some notion of the year-to-year survival rate. It is usually
necessary to assume constant population size and constant annual survival.

It is perhaps worthwile to mention life tables here. In the original
application, alife table served to recordsurvival information down through
the history of aparticular goup ofindividuals orto reflect the current state
of survival rates in apopulation. In ecological studies there has been a
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common tendency to arrange the returns from tagging itifea table, and this
has led to some rather dubious calculations.

10.2 A single-recovery model

If a group of tagged individuals are released together and have a
constant survival rate thereafter, hen afairly simple model suffices and
permits various useful estimates. WAt happens when the assumption of
constant survival doesiot hold is notknown in any detail, butsome rough
guidance is available. It should be notedthat the frequent practice of
estimating annual survival from tag recoveries may not be importantly
influenced by seasonal changes in survival, solong as the annual rate
remains relatively constant. The other major use of single-recovery data is
for relatively short-term periods (usually in seasons ofxploitation) wherein
it may reasonably be assumed that survival is approximately constant.

The most thorough analysis todate of the relevant model is one by
Chapman and Robson (1960) which actually pertained to catch-cutweisalso
applies directly to tag recoveries, aspointed out by Paulik (1962). Wewill
follow that analysis here. Let:

Npo = initial population (number tagged ornumber alive at the time

analysis starts -- thidast assumption may beised to avoideffects of ahigher
early mortality).

s = constant survival rate (per unit of time)

A = fraction of number currently alive that areaught and reported (in
a given time unit). This may be the product of two constants, one being
"catchability” and the second, reporting rate. Note that A is used elsewhere
here as arate of population change,but is used inthis case tocorrespond to
the paper of Chapman and Robson (1960).

nxy = number of tagged individuals recovered inxth time wunit.

Confusion in notation can arise here, depending onhow time units are
numbered. One naturally speaks of the “first" time unit, but it is useful to let x =
0,1,2,..., and to suppose thap mepresents thosendividuals who fail tosurvive

through the first time unit. Under the above assumptions and defintions, it

turns out that the probabilityof recovering a given individual in the xth time
unit follows a geometric probability distribution:

x F (1'S)§( x=012, .. (101)
and the expected numbers of recoveries are:
Rin= NoAsX x=0,12,... (10.2)

This seems intuitively obvious, since ifA represents "catchability"the entire
population isavailable inthe first year, but only survivors are "at risk" in
subsequent years.
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The actual recoveries inany particular time unit constitute abinomial
random variable, with probability given by (10.1) above, so that:

Pr{nyk individuals recovered} =§:‘;%()\sx) nX(l-)\sX)NO'nX (10.3)

If one wants to consider the distribution of recoveries over a set of time
periods, then itis possible toconsider the conditional distribution asbeing
approximately a multinomial distribution. That is, for a fixed total sample
n=rmn+n +..+rg, the joint probability distribution

Pr{ ng,n1,n2, ... .1k | n}
is a multinomial with the P corresponding to equation (10.1) above.

Chapman and Robson (1960) have shown that the best estimate for s is:

A T
ST (10.4)
where:
npn-np + R+ ... +rk
T=m+2m +3m + ... +krk
That is, n isjust the totalrecoveries, and n + T iseffectively the "total years
survived" after tagging. An estimate of the variance is:

Aqsg(g-nIﬁg (10.5)

It is important tonote that the method assumes thatssentially all tagged
individuals are dead when the analysis starts--a modifiednula for partially
complete recoveries will be described later.

The Chapman-Robson estimator is nearly identical to one generally
attributed to D. Lack, but first studied mathematically by Haldane (1955). It is:

T
d_n+T (10.6)

so the two estimators will differ only for small sample§he variance obtained
by Haldane is (method of maximum likelihood):

w@«ﬁa;i_ 10.7)

a little algebra permits comparison of the two variance estimates:

Chapman-Robson variance n(n+T-1)
Lack-Haldane variance ~(n-1)(n+T-2)

(10.8)
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which shows that theLack-Haldane estimatewill be a little smaller than the
"best" estimate, but not mportantly so ifthe number of recoveries is at all
sizable.

A simple way to obtain the Lack-Haldane estimator is touse equation
(10.2) and obtain expected values for n and T as follows:

E(n) = E(p) + E(M) + ... = NoA(L + 5 +& + ....)

and summing the infinite geometric series, we have:

NoA N.As
E(n) =—— E(T) = BXxny) = NoA(0 + s +28 + ...) = —2—
(M) =7T< (T) = B{xnx) = NoA( )= e
If the "mean age at death" is defined as:
- :7r<1T_
then substituting expected values for T and n:
EM _s_ R
E(n) ~1-s and SoeT (10.9)

Exanpl e 10.1 Chapman- Robson survival estimate

As an exanple of the use of equations (10.4) and (10.5) we
consider sone data on band recoveries from adult Canada geese
(Rutherford, 1970:27) banded as adults in the Arkansas Valley of
Col orado in the 1950-51 season. A total of 344 geese were banded, wth
recoveries in subsequent years as foll ows:

Year of recovery Number of

following banding recoveries
X Ny
o 45
1 23
2 19
3 10
4 7
5 12
6 5
7 3
8 3
9 2
10 2
11 0
12 1
13 1
14 0
15 1

Total recoveries (n) 134

T=23+2(19)+3(10)+4(7)+5(12) + ... +15(1) = 332
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A T 332
S H+T-1 ~134+332.1 o714
A A A T-1 . 332 332 331
v(s )= s(s "hiT7-2 " 765 (465_ 164 - 0.0004401

so that the standard error of the estinmted variance is

(.0004401) 1/2 = 0.021 and approxi mate 95 percent confidence linits on
the survival estimate are given by .714 + 2(0.021) or 0.672 to 0.756.

10.3 Further estimators

One very simple procedure isto consider the fraction ng/n, which

represents the fraction dying in the first time interval and thus estimates a
mortality rate. Conversely, survival can be estimated as:

no N-Ng ng +n2 + ... +rk

n n “Npo + N1 + N2 + nk

$S=1 (10.10)

where 1k represents the oldest goup from which any recoveries are
obtained (we again assumeall tagged individuals are dead before calculations
begin, so no new recoveries can be expectedjhe above estimate isttributed
to Heincke (1913) and a minor modification (dropping rk from the
denominator of the right-hand expression) yields an estimator proposed by C.
H. N. Jackson (1939).

The Heincke estimatecan readily be treated statistically, inasmuch as,
for a given total nhumber of recoveries(n), the probability that aparticular
individual is recovered in the first year is just fg-s sothe distribution of the
number of first year recoveries dh is binomial:

n -
Pr{ng recoveries in ! year} = aoﬁ(l- s) o gN-No (10.11)

so that the expected number is:

&F n@ - s)
which gives the estimate of equatiofi0.10). Theusual bhomial estimate of a
variance of a proportion then gives a variance as:

V(So) ﬁi—s) (10.12)

The importance ofthis result arises bycomparison with equation (10.7). The
ratio of the two variances is:

V(S'o) _ 1 10013 )

V(g) 1-s

which amounts to a rather remarkabktate ofaffairs, if one sbps toconsider
the substantial csts involved in tag andrecovery studies. Supposing annual
survival to be onthe order of 50 per cent, gaaion (10.13) shows that the
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variance obtained from the Heincke methedll be about double thatobtained
from the preferred methods Chapman-Robson otack-Haldane). This then
says thatchoice ofthe wrong equation amounts effectively tothrowing away
half of one's hardearned information, and the olderliterature abounds with
examples where the Heincke estimate isused when the better estimate is
available.

10.4 Analysis of incomplete data

In many applications it is necessary to estimatervival from only part
of the data. Perhaps the mostfrequent case iswhen the investigator cannot
afford to wait untii nearly all recoveries are back, but mustproceed with
results from the early recovery periods. Calculations depend on anequation
analogous to (10.9) which is:

+ +1
T s (k) (10.14)
n 1-s 1-Kk+1
in which k represents the last recoveries available, and
ngang+n2+..+rg
T=n+2m+ ...+ krg
If only two years of recoveries are available k=1, and
T . n _ s 282 s
n no+ny 1-s 1. 1+s
and this gives an estimate of s as
A ni
:m (10.15)

which is what one mightintuitively expect--that recoveries itwo successive
years differ only by s (or this can be obtained by use of equation (10.2)).

If k=2 a somewhat more complicated equation can be obtained for
estimating s directly (Robson and Chapmal961:188), butfor larger values of
k one mustresort totrial and error (iterative) methods orto tables (Robson
and Chapman, 1961). Hand calculations are not too avkward, and a starting
value can quickly be obtained from equation (10.15).

An estimate of the variance of the estimate is obtained from:

1

v(sh) = (10.16)

n
1 (k+D’s!
S(l_ S)2 (1_ Sk+l)2

An examination ofequation (10.16) shows that as Kecomes large,the term
involving k tends to becomevery snall, so that the equation reduces to
equation (10.7), as it should. With these results, the investigatordeg®rmine
approximately what the effect will be oéstimating survival from only part of
the recoveries, as omsed towaiting urtil all tagged individuals are quite
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surely dead. If s is not quite small, there may be a substantial difference in the
variability between the two situatbns. An estimate ofthe reduction in
variability resulting from wusing all of the recoveries can be obtained by
dividing equation (10.7) by (10.16):

V(s . | (kr1)2sK(1 - 5P

visH) - (1_Sk+1)2 (10.17)
Some selected values are as follows:
k

[ 1 2 3 4 6 8 10
0.10 0.669 0.927 0.987 0.998 1.0 1.0 1.0

0.20 0.444 0.766 0.918 0.974 0.998 1.0 1.0

0.30 0.290 0.581 0.785 0.900 0.982 0.997 1.0

0.50 0.111 0.265 0.431 0.584 0.806 0.921 0.970
0.70 0.031 0.081 0.145 0.219 0.384 0.544 0.680
0.90 0.003 0.007 0.014 0.022 0.043 0.071 0.104

Inspection of the above table shows the advantage of basurgival estimates
on as many periods of recovery as possible.

Exanpl e 10.2 Analysis of inconplete data
For an exanple of "segment" cal cul ations (Egq. 10.14), we again use
Rut herford's data, and suppose that only the first 4 classes are

avail able for estimation. Then:
n = 45+23+19+10=97

T = 23+2(19)+3(10)=91

1
7

X = = 0.9381

S
© |

and we enter the tables given by Robson and Chapnan (1961) and
Seber (1982:584). In the colum corresponding to k = 3 (4 classes) and
find 0.938 to correspond to s = 0.62. A convenient alternative is to use
SOLVER in EXCEL. A variance estimate (Eq. 10.16) is:
1
v )= 97 = 0.003816
1 16(0.62)2

0.62(0.38)2 (1-(0.62)%)2

which is much larger than the variance for the conplete set of data
(0.00044).

10.5 Testing assumptions

The assumption oftonstant survival and recovery rates isone likely to
be violated in many actual sittimns. Wewill look briefly at some of the
effects of changing ratesn a later section. Here weconsider ways oflooking
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for bias. Probably themost useful techique is to have ahorough knowledge
of the circumstances inwhich the data wre obtained, and toexamine the
prospects for any major change that might infuence either survival or
recovery rates. Aother considerable help is to have aather long series of
comparable data toexamine for any persistent trends. Most bird-banding
experience, for example, shows thaiveniles have amarkedly lower survival
than do adults. Hence one either tries to band mostly adults odeals with
juveniles separately.

Saome statistical tests may also beonsidered. One isjust the ordinary
chi-square goodness-of-fit test, wherein the expected valuesare computed

from ny = n/>s X and compared with the observations (g,n1,n2,...). Substantial

departures from constant survival mayshow up in this test, but it isn'tvery
sensitive, and failure to obtain a significant chi-square needs to be regarded as
a necessary condition for use of the estimate but should notebarded as any
substantial evidence against bias.

Fortunately there is atest for oneof the major sources of reor, i.e., a
difference insurvival rate between the first recovery -class andsubsequent
classes. It thus serves very well to examine the effects of, for exargieging
young animals. The test is due tdChapman and Robson (1960) and is achi-
square with one degree of freedom:

(5-5'0)2
T(T-1)(n-1)
n(n+T-1)2(n+T-2)

2% (10.18)

where s is obtained from the Chapman-Robsestimate of equation10.4) and
s’y is the Heincke estimate of equation (10.10).

Exanmpl e 10.3 Testing conpatibility of first recoveries

The chi-square test for conpatibility of the first recovery-class

with the remaining classes (Egq. 10.18) is readily illustrated on the
data of Exanple 10. 1. It requires Heinke's estimate of survival (Eg.
10. 10):

. n-nNgo 134 - 45

So = = 132 = 0.6642

The chi-square test then is:

(0.714-0.6642)2
w2 = _332(331)133 ~0.00248

134(465)2464  0.00109

=2.28

which is well short of the 95 percent significance |evel of chi-square.

The above test is "two-tailed", that is, operates so as to protect
one agai nst either over- or under-representation of the first age-class.
If the investigator has good grounds for expecting a departure to be in
only one direction (e.g., if mesh size of nets is known to be the
critical factor, or greater vulnerability of young ganme aninals), then a
one-tailed test may be in order. This can be obtained just by
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N

considering the ratio of S - s'p to the square root of the
denom nator of Eq. (10.18), and referring to tables of the nornal
distribution for significance levels (the critical level for a one-
tailed) test at the 95 percent level of significance is 1.65 rather than
the 1.96 used for two-tailed tests). If there were grounds to support
doing a one-tailed test here, one could cal cul ate:

0.714-0.6642  0.0498

Z = =
(0_00109)1/2 0.033
which is again short of the 95 percent |evel (1.65).

=15

The above are "l arge-sanple" tests. Chapman and Robson (1960: 364)
poi nt out t hat the appropriate "exact"” distribution is the
hypergeonetric, but also that for all practical purposes one my
substitute a table of binonmial confidence limts, using the statistic
T(=n1+n2+n3+...) as "sanple size" and T-n+ng as "nunber of successes".
If the selected confidence interval (corresponding to chosen |evel of
significance) excludes s then one rejects the hypothesis of
conpatibility of survival of the first age group with that of the
remai ni ng recoveries. If the above tests suggest inconpatibility of the
first recovery class, one sinmply drops that class and recodes his data,
so that ng is now the first recovery-class retained, nq1 the second, and

so on. Cal cul ations of survival and variance, etc., proceed just as
before, but its a wise precaution to repeat the above testing procedure
to make sure that the new initial recovery group is conpatible with the
remai nder.

Exanmpl e 10.4 Conbi ni ng years

In Exanple 10.1, a |l arge nunber of geese were banded in one year,
resulting in a substantial nunber of returns and quite a precise
estimate of the annual survival rate. Oten one nust deal with rmuch
smal | er sanples, and the question of conbining a series of estimtes nay
then come up. \When all, or, virtually all, of the recoveries are in,
the procedure is very sinple -- just add up the recoveries, and proceed
as before (Chapman and Robson 1960: 357). Sone data on adult Canada
geese banded in Washington (Hanson and Eberhardt, 1971) provide an
exanpl e:

Recoveries during subsequent years

Year Number Recov.
banded banded ng n1 n2 nNn3 ng4 ng ng ny ng ng Tot Rate
1950 43 1 2 1 1 1 6 .14
1951 40 2 2 2 1 7 .18
1952 133 14 8 7 6 1 2 1 1 40 .30
1953 13 1 1 .08
1954 25 3 2 2 1 8 .32
1955 30 3 2 1 6 .20
1956 49 1 2 3 1 1 1 9 .18
1957 38 2 1 2 2 1 8 .21
1958 45 5 2 2 2 2 13 .29
1959 34 1 1 1 1 1 1 6 .18
1960 18 2 1 3 .17

=
o
\I

468 31 23 17 12 4 7 5 3 3 1 .23
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T =23 + 2(17) + 3(12) + 4(4) + 5(7) + 6(5) + 7(3) + 8(3) +9(1) = 228

Ao T _ 228 0.683
>Tn+ T -1 "33 o

v )= 228[ 228 227] = 0.0006506
334 334 333

We thus obtain an estimate of annual survival of .684 + 2(0.0006506) 1/2
or confidence limts of 0.634 - 0.735 on the conbi ned estimate.

VWen several years are conbined, as above, it seens prudent to
exam ne the band recovery rates to see whether there is any evidence to
suggest a change that nmight invalidate the underlying assunptions (e.g.,
a change in reporting rates). One sinple procedure is just to do a chi-
square test against the overall recovery rate. The cal cul ati ons here
are:

Number Number Recovery

Year banded recovered(qj) rate (pj)
1950 43 6 0.1395
1951 40 7 0.1750
1952 133 40 0.3008
1953 13 1 0.0769
1954 25 8 0.3200
1955 30 6 0.2000
1956 49 9 0.1837
1957 38 8 0.2105
1958 45 13 0.2889
1959 34 6 0.1765
1960 18 3 0.1667

468 107 (A) 0.2035 = p

and a handy fornula for chi-square is (Cochran and Snedecor, 1967:240):

-~ PA
2= 2 P& PA_265800- 217738 , o
Pq 0.1621

with 10 degrees of freedom indicating strong evidence of a departure
from chance fluctuations in proportion recovered.

10.6 Life tables

The original and major use of a life table is toprovide aconvenient
summary of survivorship data over the history of a given groupaoimals, all
born at nearly the same time (a'cohort" and hence a cohorttable) or to
provide across-section ofcurrent nortality experience in apopulation (a
"current” life table). As such,there should be noobjection tolife tables.
Unhappily many suchtables have beerconstructed from band-recovery and
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age structure data in waythat may greatly reduce the value of the data. Most
of this section will bedevoted to life tables asconstructed from band recovery
data.

The basic structure ofthe table is quite simplealthough avariety of
modifications and extensions has to bederived for various special purposes.
The structure of a'cohort" table isobtained asfollows. Most life tables start
out with an arbitrary numbenf newly born animals (usually 1000, or 10,000),
and have 4 main columns. The first (x) column lists age at thebeginning of
the time interval (normally a year)the second {) gives the number alive at

the beginning ofthe year, while the third (dx) gives the number ofdeaths
during the year, and the fourth column (g) represents the nortality rate.
Entries in a particular table might thus be:

X Ix dx ax

0 1000 620 0.620
1 380 167 0.439
2 213 85 0.399
3 128 51 0.398
4 77 32 0.416
5 45 19 0.422
6 26 14 0.538
7 12 6 0.500
8 6 4 0.667
9 2 2 1.000

Since the tablebegins wth an arbitrary number ofanimals, the only
really important data are those contained in the cglumn, which summarizes
the available information on mortality byge. Somecohort tables do start out
with the actual number ofindividuals in a realgroup, and thus provide more
information tan doesthe "standard" take. "Curent" life tables areusually
constructed in eaxctly the sme way, butdepend ondifferent sources ofdata
(i.e., on current mortality experience of a population).

Construction of acohort life table (also known as a"time specific" life
table) from the recovery of marked animals attheir death rests on the
intuitively plausible conceptthat the recoveries constitute arepresentative
sample of the fate of the entire group inially marked. The method in
common use is to sum up the totedcoveries (n) over the years, and toregard
this total as acohort, or"number inifally at risk". Thus n may be thefirst
entry in the Ik column --unfortunately many workers convert it t01,000 or

10,000, making it impossible (withoutadditional information) toreconstruct
the actual data from their tabde. Thoseindividuals recovered inthe first year
are hen regarded as mortalities (aparing in the d¢ column) and the first

year mortality rate isestimated as g/n. In the secondyear it is assumedthat
there are n-p survivors (h entry) and the recorded deaths inthat year (R)
appear inthe d position and become the numerator inthe nortality (qq)
estimate:

ni

190 - no
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continuing the process yields nortality rates for each year up to the last
recoveries (R) whereupon the last year's mortality rate becomggng = 1.

It thus turns out that the first entry in the table corrgsonds to the
Heincke estimate of equation (10.10), and each successitey caresponds to
the same estimate, with previous recovery-class disregarded. Thus the
estimates are not what they have been claimed tbe, that is, age-specific
mortality rates. They are instead estimates ofoastant rate for the whole set
of recovery data, andthe sipposed life table isnot at all what it isnormally
expected to be. Furthermore, as wave seen fromequation (10.13) using the
Heincke estimate amounts to discardirg sizable fractionof the available data.
Sonme workers did "combine" the several estimates by eighting each qx
estimate by the apparent sample sizg)(ngiving:

No
el +n_no (n-ng) + ... 0
Ng + 2n1 + 3n2 + ... n+ T
which is the Lack-Haldane estimate, and thus maywell be the only really
useful estimate inthe whole table. If the actual numbers recovered are
entered in the table (rather than converting to 1000 or 10,000 for ghentry)

then it is feasible to gdack anduse the chi-square test of equation (10.18) on
the data. Sometimes the total number of recoveriegivien separately, sdhat
it is possible to reconstruct theriginal data from the tale, even though bis
1000 or 10,000. At wrst, one canlook down the gx column tosee whether the
apparent rortality rates dochange --but this is seldom avery helpful
practice in view of the substantial variability of the Heincke estimates.

(10.19)

Perhaps the best summary statementabout cohort tables based on
recovery data isthat they shouldnot_be constructed inthe first place. If the
basic assumption isfulfilled (constant survival) hen each entry estimates
exactly the ame quantity! If survival rates arenot constant over the years,
then the structure ofthe various estimatescan beillustrated by writing out
the value for the first one:

No PN(1- s1)

—e———— = 10.20
n - no PN(1-s2)s1+pN(1-s3)s1s2 + ... +pPN(1-%+1)S1S2..-Sk ( )

®

where p = recovery rate, N population tagged, and the jsare annual survival
rates. Thus only if the § are all equal to s, do weget conditions for a valid
estimate.

When one uses data based on augr of animals all marked atthe same
time, the applicable life table concepg indeed that of a&ohort. However, the
data are nonetheless &itmes used toconstruct acurrent life-table (also called
a "dynamic" table, and perhaps more accurately so in the present context).

The usual practice seems to be toregard the ratios of successive
recovery- classes as estimators of current survival rates, so that:

xX= Iix—l

and using the notion of equation (10.20):
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_ PN(1-sgs1s2..5¢-1 - (1-5¢)sx-1
PN(1-s¢-1)s1S2...5-2 1-s¢-1

(10.21)

so that, if survival is constant itwo successive years, thmethod doesprovide
a valid estimate. The existence of changing survival rates evidemilly result
in a bias. Perhaps amore serious drawback isthat the samples usually
obtained are so small as tesult in substantial variability in the year toyear
estimates. In themajority of cases, it islikely that only the first two or three
recovery groups are large enough to justify mucbnfidence inthe mortality
estimates.

One technique used toreduce the effect of small samples is tocombine
the recoveries from a number of ars of marking, producing Wwat is
commonly called a "composite" life table.Sometimes this isdone with partially
incomplete data. Thatis, there may beone (or nore) sets where all of the
recoveries are available, plus several sets where banding was done recently
enough so thatthere islikely to be anumber ofmarked individuals yet alive.
In such circumstances an adjustment may be introducedoitopensate for the
incomplete nature of the data. The adjustment takes the formeoofputing for
each year dnumber ofmarked individuals available." The trick is simply to
add up the total number actually banded during the period ofinterest. This
total isregarded aghe number "available", and the first year recoveries are
divided by that number to generate a gl class. |If the mostrecent year of

banding did not contribute tothe second vyearrecoveries hen the number
banded in that year isubtracted from the total banded, and the remainder is
used as a divisor tgenerate "g" from the second yearecovery. The process

continues until the number banded inthe first year isused asdivisor for the
last recovery class. Somebetter methodsfor calculating survival rates from
incomplete data are available, and will be described below.

In summary, many of the methods for generating life tables from
banding data are of very dubious utility. The "cohort" method does nowldat
it is supposed to do at all, and the "current" method suffers seriously from
small samples. Thereis, of course, noreason toobject to the costruction of
life tables from data obtainedy recovery ofbanded amhals. The point isthat
survival estimates should beobtained bythe bestmethods available and then
used toconstruct alife table. The methods alreadydescribed are quite simple
and should normally be less trouble to use than the supposed life table method.

10.7 Catch-curves and Kkill-curves

It was mentioned above that the Chapman-Robson analysis was
originally developed for catch curves but applies equally wll for banding
data. Itthus follows that there islittle need torecapitulate the methods of
estimation already described. It mecessary, though, tonote some pitfalls for
the unwary and changes in assumptions. Iband-recovery studies, one
usually has aknown population (the total number banded) understudy, and
obtains recoveries over a number of time interval¥he essential assumptions
are that survival remains constant(or nearly so) and that recovery rates of
dead animals also remain constant. Omhe other hand catch-curves orkill-
curves usually depend on anage-classification of a gup of animals aken
nearly smultaneously (by fishing or hunting) and thus born over anumber
of years. Constant survival is again a necessary assumption, while the
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assumption ofconstant recovery rates is now replaced by one of equal
"catchability" (vulnerability to the hawest method) for each age group.
Unfortunately a third assumption has also to be added in that @stsrequired
that each age-group initially exist in equal numbers.

In fisheries studies there is often a problem with the secasdumption
- - younger fish may beless readily taken bythe fishing methods (e.g..mesh
size of rets). This problem isusually dealt with by restricting the analysis to
start with the firstage goup considered to béfully vulnerable tothe gear"
(which can be checked out with the chi-square test of guaion (10.18)). Most
fish have a tremendously largeeproductive potential sothat it seems that the
link between size of mature stock and numbers of meweruits may atleast be
tenable for several ars in arow. This is not todeny, of course, the
importance ofspawner-recruit relationships. The major point is that catch-
curves seem to be rather more useful in fisheries wdr&nt dokill- curves in
studies of hunted populations, and seemslikely that the chief difficulty may
lie in the third assumption. Most game populations donot appear tohave a
sufficiently constant recruitment to permit use of survival estimates fioim-
curves for more than very rough estimates.

10.8 Combining estimates from several years

In many cases theavailable recovery data will comefrom anumber of
years ofbanding. There then may arise the need tocombine severalsets of
data toproduce asingle survival estimate. As always, one should not blindly
combine data from different years but should first examine the individual
estimates (alongwith the standard errors), ad review the piospects of any
major change between the years in question. All too often recoveries from a
single year's banding constitute a very small sam@ed they may have to be
combined with other years.

The simplest situation arisewhen there are complete sets ofrecoveries
for a number of years. One then simply adds together the correspordiag -
classes (i.e., numbers of recoveries 1,2,3,... years after banding) and uses
equation (10.6) to etimate survival, and (10.7) to stimate variance of the
estimate.

When the data are incomplete, as dicussed in Sectionl10.4, the
calculations become somewhat more tedious. The usual set of data may be
represented by the following table:

"Age" at recovery

Maximum age

at recovery 1 2 3 X Totals
k . . . . Nk
3 d13 d23 d33 n3
2 di2  d22 n2
1 d11 ni

Totals a do d3 dx >nk = Xdx
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Here the rowsare sets ofrecoveries from a given year ofbanding, wth the
most recent year at the bottom -- hence theximum "age" atrecovery is one
year. The row totals (rg) are thus the totalnumber recoveredfrom agiven
year of banding, while the column totals reflect the total numbers that had
been "at large" for a given number (x) of years. "Age"niescessarily reckoned
from banding, sothat animals banded asadults may in fact beappreciable
older than implied by the terminology here.

Actual survival estimates from the above table arebtained from the
following equations (Gilmartin et al. 1993):

kl k+1)k+l
,zo, R

(10.22)

g [yl -8

102
5 S1-9) (1-s"")

where Tk is computed for each row in just the same way that T was obtained for
equation (10.6),
3 ¥ d13+ 2d23 + 333

The solution of equation (10.22) depends on éritive methods just as it
did for equation (10.14), towhich it is cbsely related -- infact (10.22) may be
obtained by summing equation (10.14) over the total number of yyars of
recovery (i.e., sum on k). Similarly, equation (10.23), stems fremmming the
equation (10.16).

The method described above was obtained by Haldane (1955) and is
fairly well-known as"Haldane method.” Itmay be repeated that aprudent
investigator will use equations (10.14) and (10.16) investigate ateast part of
the individual years before settling on a combined estimate. If no banding was
done in one or more years it is still feasible to use equations (10.22)(nh@3);
one justenters zeroes for the gars of nobanding. Gilmartin etal.(1993) used
monte carlo methods tstudy the variance ¢quation and found that it gave
confidence limits that were too wide, soresorted tobootstrapping toestimate
confidence limits.

Exanmpl e 10.5 An exanpl e of Hal dane's net hod
For an example of conbining inconplete data, we use sonme band

returns data on Canada geese banded in Washi ngton (Hanson and Eber hardt,
1971) as adults:
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Year No. Maximum age "Age at recovery"
banded banded at recovery O 1 2 3 4 5 6 Tot.

1961 14 6 3 0o 2 1 0 O 0 6
1962 15 5 0 2 0 0O 1 0O 3
1963 28 4 4 4 1 1 O 10
1964 45 3 3 2 2 6 13
1965 10 2 0 1 0 1
1966 0 1 0O O 0
1967 15 0 2 2
12 9 5 8 1 0 O 35

W first conmpute Tk and n, for each row in just the same manner as T was
conput ed before:

Te = 2(2) + 3(1) =7 ng =6
Tg =2+ 4(1) =6 ng =3
Tg=4+2(1)+3(1)=9 ng = 10
T3 =2+ 2(2) + 3(6) =24 n3 = 13
To=1 np =1
T1=0 ng=0
To=0 no =0

and s is estimated by solving equation (10.22) by trial and error. One
sets up the tabl e above in EXCEL and conputes the conponents of equation
(10.22) in two colums, suns these and varies s until the two columm
sums are equal. If there are several exanples to conpute, the solution
m ght be obtained with SOLVER

10.9 Regression methods

Recalling equation (10.2):
8 (A NorsX

If we take logarithms:
log E(ng) = log(NoA) + x log s (10.24)

and ordinary linear regression methods might bsed to fit observed data and
to estimate s ashe slope ofthe regression of log nx on years sincebanding.

Such aprocedure has the additional merit that one canexamine the plotted
data for any evidence of non-linearity, and hence for prospects change in

survival with time.

A disadvantage othe regression method is that bandrecovery data do
not conform to therequirements for regression estimation. Chapman and
Robson (1960) suggest an imrovement insome cases may bebtained by

using
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lo -
g1k n +1

X

as the independent variable (rather than just log ny). They further
recommend droppingall observations beyond the point where 1y is less than
5.

It is important torealize that the regression equation estimates log s,
and not s. If natural logarithms are used, the quantity

i =dag

is the "instantaneous" rate of survival, and riasther widely useful in fisheries
work as such. A natural tergtion isto antilog the estimate of log s for a
direct estimate of sunfortunately this yields a biasedestimate and there
doesn't sem to bemuch to doabout itunless the samples are larg. But with
guite large samples the bias may not be important.

Paulik (1963) developed another regressiclike method based on the
fact that recoveries in a number ofyears approximately follow the
multinomial distribution (this was mentioned i8ection 10.2). His results seem
to offer an improvement over the simple regression s&timat (10.24). His
estimate is:

A Zjiniyi - [((Znjyi)(Zjnj)/Znj
log's = 1!32” L J_yl)(zj D/zn) (10.25)
Zjenj - [(Zjnj)</Znj]

where j = 1,2,3... denoted thgear ofrecovery (wth the first year's recoveries
now numbered as jnrather than g as before). Also;
ni
i wlogebNL )

which is the natural logarithm of the proportion (of N banded) in thi2 yjear.
Paulik recommended deleting observations beyond the point where
nj = 10.

Since this method als@stimates the logarithm of sand not sdirectly, it
may be bestapplied in circumstances where interest isnot so much in
estimates of annual survival, but is rather directed towards poomnts ofthat
survival rate, expressed iterms of theinstantaneous rates. That is, fisheries
workers customarily write

sE&M)

where F =mortality rate(instantaneous) from fishing and M = nortality rate
(instantaneous) from other causes (the "natural® mortality rate), and the
regression methods thus estimatahe quantity F+M directly. Any auxiliary
information on the intensity of exploitatiorduring the time periods when the
data wvere collected may potentially permit an etimat of the relative
contribution of F to total mortality.

One other reason for considering estimates oflog(s) rather han s is
that log(s) may beroughly normally distributed. This may be aconsiderable
advantage in makingtests ofcomparisons or insetting confidence limits. |If
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log(s) is normally distributed, hen the antilog €29 S will be lognormally
distributed (and thus have a skewedlistribution -- awkward for many
purposes.)

10.10 Effect of changes in survival

We recall that one of the keyassumptions inthe analysis ofboth band
recovery and Kkill-curve data is that theurvival rate remainconstant over the
period of study. In practice, survival undoubtedly does vary from yeayetor.
If the annual fluctuation are not arge and are more otess "chance" events,
presumably the estimates may provid®me sort ofaverage value. Very dten,
though changes in survival rate mapersist for several years. This is
especially true for explated populations, where shifts in management
regulations may induce changes in survival.

Not a great deal is known about the effect of persistent changes on
estimation of survival, but some indication of trend can be supplied. We first
consider band recoveries, and assume the recoveries come from an exploited
population (tags are recovered from the harvested animals). Suppose fishing
or hunting (k) and natural (M) mortality operate together over the year

(and remain constant during the year) but change from year to year. If we let

Fx
X:fo'l‘MX
then the estimate of survival from recoveries is approximately:
_E(M) _
E(n+T)
E(n1)+2E(m2)+3E(m3)+...
E(no)+2E(m)+3E(m)+... (10.27)

f1(1-s1)sp+2f2(1-52)spS1+3f3(1-S3)S0S1S2 +. - -
To(1-s0)+2f1(1-s1)S0+32(1-52)S0S1+4f3(1-53)S0S1S2+. .-

_f1(1-s1)+2fp(1-sp)s1 +...
=8 Fo(1-50)+21(1-51)So+ ...

Thus if the samples are khrge enough to permit the operation of
equation (10.27) -- one wouldreally prefer tofind E(T/n+T) which is not the
same as what wéave above -- itappears that the "dominant” quantity in the
estimate is g, or survival in the first year. One might expect thatresult by
inspection ofthe recovery data, since the firsttwo classes (g and mn) are
necessarily expected to be the largesthe effect of somepostulated change in
survival rates can bedetermined byconsidering the sequence ofsurvival
rates inequation (10.27). For example, supposesurvival has been increasing
so that § >s1 >sp. Then (1-s1) > (1-sg) and (1-s2) > (1-s1), and so on.

Consequently the overall estimate will be less than €ne might thus write:
" s gp(bias)



10.20

Any quantitative appraisal ofthe bias term will evidently depend on a
numerical evaluation of equation (10.27) for which one needs toknow
survival rates. Furthermore, changes in survival are likely also to affect ghe f

terms, inasmuch asthe fraction taken by exploitation will no doubt also
change.

While the situation above is rather complex from an analytical
standpoint, the circumstances are not difficult to mimic via computer
simulation. A limited effort along those lines (Eberhardt, 1972) led to the
following set of recommendations:

(1) The Chapman-Robson (Lack) equation for estimation of survival
from banding recoveries islearly the best of those studied. The other
methods have variances which are usually at least twice as large.

(2) Both Chapman-Robson andHeincke estimates should always be
computed and used to test the compatibility of the first yearetdirns actually
used wth those of lateryears. If the test issignificant, one may simply drop
the first year, and proceed with the remaining data.

(3) In the case ofincomplete data (banded individuals still alive at
analysis) or aprior evidence ofa marked change in survival rates, the
segment method isavailable, but variability of the results is discouragingly
large unless the data are nearly complete.

(4) Combining results of aseries of years ofbanding may take two
routes.

(a) If it appears that there is a marked change in survival, one
probably has todepend on aear-to-year analysis--this is amarea needing
further investigation.

(b) If it appears that survival rates have not changed
appreciably, hen those vyears for which complete data are available can
simply be added together and analyzed with the L&ckmula (justification for
this statement appears in the appendix to Eberhardt (1972)). If part ofldba
is incomplete, then the Haldane formula is called for.

(5) It was provisionally suggested that, even in the face of changing
rates, the Chapman-Robson and/or Heincke methodsgive estimates offirst-
year survival which likely are not very much biased. Amception isthe case
where rates change inthe second year, as ay be expected if first-year
recoveries ofjuvenile banding are used. However, the Chapman-Robson test
provides good protection against that eventuality.

(6) If all else fails, and samples are indeed large, one might lookatibs
of successive groups of returns (i.e., ude "current" life table)and obtain an
average survival rate. Evenso, it is probably advisable tosimply drop the
smaller frequency groups (say below 10 returns).

(7) There seems to be littleeason tocontinue the practice oflife- table
analysis of banding data. Under the requisite assumptions, all of the
information in a"cohort" table appears inits first line, and in the form of a



10.21

Heincke estimate,which has avariance appreciably larger tan that of the
preferred method. Use of the method thus amountshtowing away datathat
are often rather expensive toobtain. As suggested above (6), it may be
necessary texamine data on ayear-to-year basis--essentially in "gurrent”
life table, but thevariances ofsuch estimatesare dscouragingly large. The
evidence from this study suggests that the Chapman-Robson (Lack) method
will often give auseful estimate offirst-year survival, and that very likely
will be all that can effectively be salvaged.

Much the samesort of analysis can be carried out for Kill-curves. |In
analogy to equation (10.2):

klin= ANs1S2...5¢ ...

E(T) _ AN(s *2ss,+3585;+...) (10.28)
E(n+T) AN@+2s +3s, + 455,+...) '

B 1+2+3sps3+...
= s 1+251+351S3+...

and we can again consider changes like>sp >s3 and their qualitative effect
on a bias term:
s g (bias)
It is perhaps worth noting what happens if survival remains constant for
several years, e.g.:
1=82=S3 > $4=S5=56

if we let s represent the recent series angl the older series of rates, we have
E(T)  _  1+25+351%+4s125p+ ...
E(+T) ~ 1 1+29+3512+453+...

so that, unless survival is unusually high sothat the later terms have an
influence, it seems evident that the estimate will be very closejtoagat from

the effects of sampling variation.

A similar analysis can be carried out for the Heincke estimate (equation
(10.10)):
E(n-ng) 1+p+5ps3+...
E(n) ~ LT+srssor .
A crucial assumption in the above is thegcruitment remainsconstant,
i.e., that we can consider N to be aonstant in developing equationslike
(10.28). As wehave already remarked, this is frequently anunwarranted
assumption, and this largely negates direct use of the methods thus far
described for Kkill-curves of many populations.

(10.29)

10.11 Use of telemetry to estimate survival

Radiotelemetry  offers substantial advantages over depending on tag
returns for estimating survival. Conceptually, the actual time of death will be



10.22

known and it may be possible to determine the cause of death for non-harvest
mortalities. Under such circumstances a simple binomial model may suffice for
analysis. Very likely the most widely known analysis is that of Heisy and

Fuller (1985). They proposed estimating a daily survival rate as:

g=5"%-1 Y% (10.30)
X X

Where x is the total number of transmitter-days, and iy the total number of
deaths in some interval, i. An important precaution is to select an interval in
which conditions are likely to be relatively constant. It may be necessary to
consider several such intervals that span the total period of interest. For a
single such interval the survival rate may be estimated as:

g=g = (1—%)“ (10.31)

Combining rates for several intervals is then accomplished by multiplying the
rates for the several (I) intervals
|
g = M g (10.32)

=1

10.12 Kaplan-Meier estimates of survival

An important problem in survival estimation is lack of knowledge of the
fate of individuals. The difficulty is severe when tags or bands are recovered
by sampling as in hunting and fishing, but is also important in the capture-
recapture methods. Conceptually , it should be a minor concern in
radiotelemetry studies where one might suppose there is virtually absolute
knowledge of the fate of individuals. However, this is not always the case.
Radios do fail on occasion, as do the attachments, and the lost radiotag may not
always be promptly recovered. Also, radiotagged individuals may emigrate out
of the study area, which may pose a special problem that needs to be
considered in the study design.

The problem of the loss of identity of individuals turns up in various
other circumstances. It is particularly important in medical studies, where the
long-term fate of patients given some treatment needs to be followed for many
years. Various forms of “life-testing” also bring up the issue, inasmuch as
some items may be removed from the study for reasons that have no bearing
on the duration of life of the item. These difficulties led to a study of ways to
deal with the incomplete observations by Kaplan and Meier (1958). It has been
proposed that their methods for compensating for inadvertent losses be used
in radiotelemetry studies. (Pollock et al. 1989).

The basis for the Kaplan-Meier approach is to handle the individuals
lost from the study (“censored” observations) by breaking the records down in
intervals and estimating survival separately for each such interval. Overall
survival for a longer period is estimated from the product of the individual
intervals just as in equation (10.32). It turns out that the approach of Heisy and
Fuller (1985) described above can be used to give essentially the same results,
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but it is worthwhile to contrast the two methods inasmuch as the calculations
proceed somewhat differently.

Kaplan and Meier (1958) term their procedure a “product-limit”
estimate. It depends on a sequence of events (deaths and losses from
observation) that are assumed to be mutually exclusive in terms of the time of
occurrence, i.e., occur at different times. They suggest “fudging” a little if two
events are recorded at the same time. If data are recorded by day, there may
not be much need for “fudging”. Very likely losses from observation may be
less-accurately recorded as to date, and Kaplan and Meier (1958:461)
recommended that “deaths recorded as of an age t are treated as if they
occurred slightly before t, and losses recorded as of an age t are treated as
occurring slightly after t” (this is only necessary if two events are recorded at
exactly the same time).

To introduce the basic scheme, we assume no losses and consider only
deaths as events, plotted along a line representing the time span (of lejgth L
being considered.

If d deaths occur and the initial population size is N, then probability of the
first death is 1-(1/N), and given that event, then the probability of the second
event is 1-[1/(N-1)], and so on, with the probability of d deaths being the
product of the individual terms:

1 1 1
1= - A ) )

2 N-d+1
Rearranging gives:
N-1, N-2 ,N-3 N-d

( N )(N—l)(N —2)'"(N -d —1)

Cancelling like terms in numerator and denominator reduces the result to:

S?(L)———l—% (10.33)

Which is what one would expect, i.e., survival rate equals 1 — mortality rate.

The approach of Heisy and Fuller previously discussed might be labeled
the “radio-days” method for convenient reference. It uses a daily survival
rate and estimates survival for the same spaj) és:

Y
g=(1 =2 (10.34)

Where X is the sum of the days lived by the animals dying ,in plus the (N-d)

L, days from animals that did not die during the observed time span. Thus the
product-limit (Kaplan-Meier) method uses a mortality rate based on population
size while the “radio-days” method expands a daily rate to the overall interval
used. The time span considered can be varied to accommodate one’s immediate
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purpose. Pollock et al. (1989:Table 1) illustrate the method using weekly data.
Their Table 1 with Heisy-Fuller calculations added shows the agreement
between the two methods:

Heisey-

Number Kaplan-Meier Cumulative Cumulative Fuller
Week at risk Deaths Censored Survival weeks deaths Survival

1 18 0 0 1 18 0 1

2 18 0 0 1 36 0 1
3 18 2 0 0.8889 54 2 0.8930
4 16 0 0 0.8889 70 2 0.8905
5 16 0 0 0.8889 86 2 0.8890
6 16 1 0 0.8333 102 3 0.8360
7 15 0 0 0.8333 117 3 0.8337
8 15 1 1 0.7778 132 4 0.7818
9 13 1 2 0.7179 145 5 0.7292
10 10 1 1 0.6462 155 6 0.6738
11 8 0 0 0.6462 163 6 0.6620
12 8 0 1 0.6462 171 6 0.6514
13 7 0 0 0.6462 178 6 0.6403

The data above are cumulated over the span of the study, whici,otesd
previously, assumesconstant survivorship. Ifthere is reasonto suppose that
survival isnot constant, thenthe datashould beanalyzed inblocks that are
more likely to have constant survival within ablock. In many studies,
captures may go orthroughout the course ofthe study. Kaplan and Meier
(1958) notedthat these individuals can beadded tothe number atrisk asthey
enter the study, and Pollock efl. (1989) dubbed such anapproach as a
“staggered-entry” model, and illustrated it with weekBata onbobwhite quail
(Colinus virginanus) survival. They provided a convenient variance estimate
[Heisey and Fuller (1985) resorted to acomputer program for variance
estimation]:

)] = W (10.35)

where r(t) is the number at risk at time Data toillustrate the approach from
their Table 2 appearbelow with variance estimates. Inthis case sequential
survival estimates [equation(10.33)] are multiplied [equation (10.32) to obtain
an estimate of survival atthe end of thecurrent period. Touse the Heisey-
Fuller approach onthe data, one would have to determine how long the
individuals dying during the period (week) were alive during the period, so
that it is desirable to record radio-days as bpestsible. Inthe table below it is
assumed thatindividuals censored @re lost atthe end of theperiod and any
added were introduced at the end of the period.
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Kaplan-Meier estimates ofsurvival for bobwhite quail [from Pollock et al.
(1989: Table 2)] with variance estimates.

Number Kaplan-Meier

Week at risk Deaths Censored Added Survival Variance
1 20 0 0 1 1 0
2 21 0 0 1 1 0
3 22 2 1 0 0.909 0.0034
4 19 5 0 0 0.670 0.0078
5 14 3 0 0 0.526 0.0094
6 11 0 0 0 0.526 0.0119
7 11 0 0 0 0.526 0.0119
8 11 2 0 0 0.431 0.0096
9 9 1 0 0 0.383 0.0100
10 8 0 1 0 0.383 0.0113
11 7 0 0 3 0.383 0.0129
12 10 0 0 6 0.383 0.0090
13 16 4 0 10 0.287 0.0037
14 22 4 0 5 0.235 0.0019
15 23 4 1 6 0.194 0.0013
16 24 4 0 0 0.162 0.0009
17 20 2 0 0 0.146 0.0009

10.13 More complex models for analysis of survival data.

Much of this Chapter has been devoted to what mightnow be termed
“classical” methods for estimating survival. The older methods remain
valuable as @ackground for understanding the newer approaches, and they
provide tools for initial analyses and for planning studies. The majpawback
in using these earlier methods is thestrictive assumptions thatare required
to justify the estimates. &ction 10.10 provides some rough notions about the
outcome of usig these estimates when the underlying assumptions are
violated.

The newer, “modern”, methods make it possible touse lessrestrictive
and more realistic assumptiongnd to takeadvantage ofthe computing power
now available onmost desktops. Adisadvantage ofthe newer methods is the
nearly universal dependence owomputer programs. Amajor goal of the
present effort has been one of presenting the basis for many quantitative
methods without requiring the reader to use any more compleograms than
are available onmost spreadsheets, ith specific reference toEXCEL. For the
most part, only basic statistical methods have been used. Touse the newer
methods, one needs to rely omomputer programs, along with more
sophisticated statistical methods.

A good starting-place for approaching “modeling survival and testing
biological hypotheses usingmarked animals” isthe paper by lebreton et al.
(1992). They recommend (1) startingfrom a “global” model (essentially one
that includes all the parameters that may berelevant) and assessdts fit, then
(2) select a more parsimonious model (fewer parameters) sing Akaike’s
Information Criterion (AIC), and(3) testing for the more important biological
guestions by comaring this model with “neighboring ones” using likelihood
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ratio tests, and hen (4) find maximum likelihood estimates of model
parameters with estimates of precision. Papers utilizthgs geneal approach
are now steadily appearing inthe ecological literature, and it appears likely
that the approach has become the “standard” method for studying survival.

Using AIC in biological studies is the subject ofrecent book (Burnham
and Anderson 1998) that contains agood deal ofpractical advice on model
selection and inference. It appears, however, that these authors have
developed doubts about thienportance of a “global” model, at least incontrast
to an earlier essay (Burnham aminderson 1992), and they particularly warn
of the dangers of“data-dredging”, i.e., starting with a model with many
parameters and discarding parameters byusing AIC. The problem basically is
that chance fluctuations in the data mayseriously influence the outcome,
essentially in the manner that plagues stepwiseregression (Section 1.12).
Burnham and Anderson (1998) thus recommend choosing a“parsimonious”
model on largely eriori grounds. How one does that istill an open question
in many situédions. However, the rapidly developing literature on modeling
survival offers opportunities toselect afew models that seem tde among the
top candidates and thus useful starting-places.

Lebreton etal. (1992) list asizable number ofcomputer programs that
have beenused to stimate survival and used RELEASE which is described in
detail by Burnham etal. (1987) and SURGE 4.0,which was (and still may be) a
proprietary program. Fortunately,Dr. G. C.White has invested a greatdeal of
effort in producing and updating program MARK which contains most of the
features of these earlieversions andis freely available through the Web Site
listed in Section 8.4.

10.14 Exercises

10.14.1 Calculate the Heinke estimator «frvival and its variance for the data
of Example 10.1. Calculate the ratio ofits variance tothat of the Haldane
variance etimate [eq.(10.7)]. Compare this ratio to the valugou get from
€q.(10.13). Is there a difference? If so, explain.

10142 Repeat theanalysis of Example 10.2, hen extend it touse the first 6
classes andcalculate avariance setimat from eq.(10.16). Compare this
variance stimate with that of example 10.1, and with the value of the ratio
tabulated below eq.(10.17). Discuss your results.

10143 Check onthe valuestabulated for eq.(10.17) for k =6 and explain the
trend from s = 0.1 to s = 0.9.

10.14. 4Suppose thatthere were 55recoveries inthe first year after banding
in Example 10.1 (instead of 45recoveries). Compute the chi-square test for
compatibility of first recoveries and state the p-value.

10.14.5 Calculate the chi-square value for Example 10.4.

10.14.6 Thefollowing resighting data are for female monk seals onlLaysan
Island. Calculate @&urvival rate as in Examplel0.5. Compute avariance from
eq.(10.23). As noted in Sectioh0.8, it likely is best tobootstrap forconfidence
intervals, but the etimate should servefor comparison tothe results of
Exercise 10.14.7 below.
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10.14.7 Thefollowing data areresightings for female monk seals banded on
French Frigate Shoals in 1984. Callated survivalfrom eq.(10.24)along with a
variance about regression (you can do this with EXCEL's regression tool).

Compare thisvariance vith

that dound

in Exercisel0.14.6. Also calculate s

from eq.(10.25) and compare with the results of eq.(10.24) and Exercise 10.14.6.
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